FIRE

By DragonSoft

Web UI Component

Table of Contents

31. Description

42. Struts

42.1 Configuration

42.1.1 web.xml

42.1.2 struts-config.xml

52.2 Login Example

52.2.1 Creating the form bean

62.2.2 Creating the action

82.2.3 Setting up struts-config.xml

82.2.4 Declaring the form in the JSP page

93. Non-Struts Elements

93.1 The sysinterface Package

93.2 Header, Footer, Menu

93.3 CSS Properties

104. State on Delivery

105. Continuing Development

1. Description

The web UI component is part of the topmost layer of the system (the other part of the topmost layer being the web services component). It provides a visual interface to the system that can be accessed anywhere by administrators, professors, graders, and students.

The web UI component was developed using the Struts framework (http://struts.apache.org). Struts is mainly used to provide a concrete way of submitting forms, and that is what will be documented here; the Struts User Guide at http://struts.apache.org/userGuide/index.html explains the full capabilities of Struts.

2. Struts

This section describes the basic configuration of Struts, and then to show how forms are created, it used the login form as an example.

2.1 Configuration
2.1.1 web.xml

The use of Struts requires the following additions to the application descriptor (web.xml):

a) Addition of the Struts Action Servlet

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

 <load-on-startup>2</load-on-startup>

</servlet>
b) Addition of a Struts Action Servlet Mapping

<servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>*.do</url-pattern>

</servlet-mapping>

c) Addition of the Struts Tag Libraries

<taglib>

 <taglib-uri>/tags/struts-bean</taglib-uri>

 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

</taglib>

<taglib>

 <taglib-uri>/tags/struts-html</taglib-uri>

 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>

</taglib>

2.1.2 struts-config.xml

User input from forms is processed using form beans and actions, which are defined in this configuration file. Form bean classes inherit org.apache.struts.action.ActionForm and contain a series of “set” and “get” methods that specify the input fields. Action classes inherit org.apache.struts.action.Action and contain an execute method that gets called by the Struts framework when a form is submitted.

This file is configured for every input form in the web UI component. To see how form beans and actions are configured, walk through the login form example in Section 2.2.
2.2 Login Example

The process of creating new forms is described via an example. This section walks through the process of how the login form was created. It should be read in sequence.
2.2.1 Creating the form bean

The login operation involves two fields: username and password. The first step is to create the form bean. Form beans must extend org.apache.struts.action.ActionForm.

The form bean that was created for the login operation is com.dragonsoft.tryapp.webapp.auth.LoginBean. The class declaration is:

public class LoginBean extends ActionForm {

 private String strTryUsername = TryConstants.BLANK_VALUE;

 private String strTryPassword = TryConstants.BLANK_VALUE;

 public void setTryUsername(String tryUsername) {

 strTryUsername = tryUsername;

 }

 public String getTryUsername() {

 return (strTryUsername);

 }

 public void setTryPassword(String tryPassword) {

 strTryPassword = tryPassword;

 }

 public String getTryPassword() {

 return (strTryPassword);

 }

} // LoginBean

2.2.2 Creating the action

The second step is to create the action class whose execute method will be called when the form is submitted. Action classes must extend org.apache.struts.action.Action.

The form bean that was created for the login operation is com.dragonsoft.tryapp.webapp.actions.auth. The class declaration is:
public class LoginAction extends Action {

 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,

 HttpServletResponse response)
 throws Exception {
 ActionForward returnValue = mapping.findForward("loginFailed");

 List strErrors = new LinkedList();

 WebAppUser webAppUser =

 (WebAppUser)request.getSession().
 getAttribute(TryConstants.TRY_SESSION_USR_OBJ);

 if (webAppUser == null) {

 webAppUser = new WebAppUser();
 request.getSession().
 setAttribute(TryConstants.TRY_SESSION_USR_OBJ,

 webAppUser);

 }

 TrySession trySession =
 (TrySession) request.getSession().
 getAttribute(TryConstants.TRY_SESSION_OBJ);

 if (trySession == null) {

 trySession = new TrySession(request.getSession(), webAppUser);

 request.getSession().
 setAttribute(TryConstants.TRY_SESSION_OBJ,

 trySession);

 }

 LoginBean loginBean = (LoginBean) form;

 try {
 // login logic – not shown for this example | assume:

 returnValue = mapping.findForward("studentHome");
 trySession.setUserCredentials(usrCred);

 } catch (UserAuthenticatorException e) {

 // invalid username and/or password - reset to Guest

 webAppUser.logout();

 strErrors.add("Invalid username and/or password.");

 }

 request.setAttribute(TryConstants.TRY_ERRORS, strErrors);

 return (returnValue);

 }
} // LoginAction

At this point, several notes should be made about how data is passed through the web UI component. First of all, there are two “beans” that get created for every user session (even if the user is not logged in), and they are stored in the javax.servlet.http.HttpSession object accessed via request.getSession().

The first “bean” is a com.dragonsoft.tryapp.webapp.auth.WebAppUser instance that is used to identify the user currently logged in. The second “bean” is a com.dragonsoft.tryapp.webapp.sessions.TrySession instance that is used to cache information before being sent to the other layers of the system. For example, a student may upload files for an activity one at a time, but they must be sent to other layers together as part of a submission. The TrySession instance would temporarily store the information related to the uploaded files, until they were ready to be sent down to other layers.

The code that ensures that there is always a WebAppUser instance and a TrySession instance ready to work with, is

 WebAppUser webAppUser =

 (WebAppUser)request.getSession().
 getAttribute(TryConstants.TRY_SESSION_USR_OBJ);

 if (webAppUser == null) {

 webAppUser = new WebAppUser();
 request.getSession().
 setAttribute(TryConstants.TRY_SESSION_USR_OBJ,

 webAppUser);

 }

 TrySession trySession =
 (TrySession) request.getSession().
 getAttribute(TryConstants.TRY_SESSION_OBJ);

 if (trySession == null) {

 trySession = new TrySession(request.getSession(), webAppUser);

 request.getSession().
 setAttribute(TryConstants.TRY_SESSION_OBJ,

 trySession);

 }

Another note that should be made is how errors are passed back to the JSP pages to be displayed. A list of errors is created, and then stored in the javax.servlet.http.HttpServletRequest object that will be available to the resulting page. The code is:

List strErrors = new LinkedList();

Followed by:

request.setAttribute(TryConstants.TRY_ERRORS, strErrors);

As errors as encountered, they are added to the list, which is then always available to the resulting page.
2.2.3 Setting up struts-config.xml

Form beans and actions need to be declared in struts-config.xml in order for the Struts framework to know about them. The login form bean was declared as follows:

<form-bean name="LoginBean"

 type="com.dragonsoft.tryapp.webapp.auth.LoginBean"/>

The action was declared as follows:

<action path="/LoginAction"

 type="com.dragonsoft.tryapp.webapp.actions.auth.LoginAction"

 name="LoginBean">

 <forward name="studentHome" path="/home/student.jsp"/>

 <forward name="graderHome" path="/home/grader.jsp"/>

 <forward name="profHome" path="/home/prof.jsp"/>

 <forward name="adminHome" path="/home/admin.jsp"/>

 <forward name="loginFailed" path="/auth/login.jsp"/>

</action>

Each possible JSP page that can be redirected to after the form is processed should be declared here, as a forward. For the login action, each forward corresponds to a different page based on the user’s level, except for “loginFailed”, which brings the user back to the login page. Note that only the login.jsp page and the student.jsp page have currently been implemented.
2.2.4 Declaring the form in the JSP page

The last step is to declare the login form in the JSP page that results in the action. The login form was declared as follows:

<html:form action="/LoginAction">
<center><table width="400" border="0" cellspacing="0" cellpadding="0">
<tr><td align="middle">
<div style="border: 1px solid #000000;">
<table border="0" cellspacing="0" cellpadding="8">
<tr>
<td align="right"><div class="defaultBoldText">Username: </div></td>
<td><input type="text" name="tryUsername"></td>
</tr><tr>
<td align="right"><div class="defaultBoldText">Password: </div></td>
<td><input type="password" name="tryPassword"></td>
</tr><tr>
<td colspan="2" align="middle">
<input type="submit" value=" Login "></td>
</tr>
</table>
</div></td></tr></table></center>
</html:form>

The key line is <html:form action="/LoginAction">, which comes from the Struts html tag library, and generates the html code that will appropriately create the html form that works with the action object created.
3. Non-Struts Elements

Struts is the framework upon which the web UI component is built upon. This section lists the important elements that are not Struts related.

3.1 The sysinterface Package

The sysinterface package is used by the web UI component to communicate with the rest of the system. All data transmission from the web layer to the EJB layer is defined in this package.

3.2 Header, Footer, Menu

The JSP code (that is referenced in all other pages) for the common header, footer, and menu can be found in common/elements.
3.3 CSS Properties

The CSS properties file that is referenced by all pages is: common/styles/tryDefaultStyles.css. Additional styles should be defined here, and they will be automatically available to use in any JSP page.

4. State on Delivery

The Struts framework has been set up, and is ready to be built upon. JSP pages (with the corresponding form beans and actions) have been created for the following sections: the login/logout screen, the student home screen, the submission file upload screen, and the submission results screen. In addition, development began on the assignment creation screen, but was not completed.

5. Continuing Development

Once the backend is ready for it, the next step that should be taken with the web UI component is to finish the work needed for the assignment creation screen.

A useful template for developing future JSP pages is WEB-INF/src/template.jsp. The steps described in Section 2 should be taken (creating form beans, actions, etc) for all future pages that need to process and/or store user input.

PAGE
2

